## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (Z)-6-{2-[(E)-2,4-Dihydroxybenzylideneamino1phenvlaminomethvlene}-3hydroxycyclohexa-2,4-dienone toluene solvate

## Hoong-Kun Fun,<sup>a</sup>\* Reza Kia,<sup>a</sup><sup>‡</sup> Valiollah Mirkhani<sup>b</sup>§ and Hasan Zargoshi<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>Chemistry Department, University of Isfahan, Isfahan 81746-73441. Iran

Correspondence e-mail: hkfun@usm.my

Received 7 August 2008; accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.059; wR factor = 0.164; data-to-parameter ratio = 20.8.

The bis-Schiff base title compound, C<sub>20</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub>·C<sub>7</sub>H<sub>8</sub>, crystallized as a toluene solvate. In the solid state, it is present as its prototropic tautomer formed by transfer of one of the orthohydroxyl H atoms. The proton transfer is accompanied by a shift of electron pairs, as is evident from the observed C-Oand C–N bond distances of 1.305 (2) and 1.315 (2) Å, which are largely consistent with C=O and C-N distances. The actual molecule present in the solid state is thus the chargeneutral  $\beta$ -keto amine, with a small contribution of its zwitterionic valence tautomer via partial delocalization of electron pairs along the N-C-C-C-O atom chain. The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 51.99 (8) and 12.95 (9)°. Intramolecular  $O-H \cdots N$  and  $N-H \cdots O$ hydrogen bonds generate S(6) ring motifs, whereas intramolecular N-H···N hydrogen bonds generate S(5) ring motifs. In the crystal structure, O-H···O hydrogen bonds and weak C-H···O interactions link the molecules into onedimensional zigzag chains along the b axis; these chains are further stacked by O-H···O and weak C-H···O interactions along the c axis, forming two-dimensional extended networks parallel to the bc plane. In addition, the crystal structure is further stabilized by weak C-H··· $\pi$  and  $\pi$ - $\pi$ interactions.

### **Related literature**

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Cakir et al. (2002); Eltayeb et al.

§ Additional correspondence author, e-mail: mirkhani@sci.ui.ac.ir.

(2007*a*,*b*); Karabiyik et al. (2007); Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008): Fun, Mirkhani et al. (2008a.b). For background on applications of Schiff base ligands, see, for example: Hajioudis et al. (1987); Granovski et al. (1993); Dao et al. (2000); Shahrokhian et al. (2000); Eltayeb & Ahmed (2005a,b); Fakhari et al. (2005); Karthikeyan et al. (2006); Sriram et al. (2006). For related literature, see: Fun & Kia (2008).



## **Experimental**

| Crystal data                                                                                                                                                                                                                         |                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} C_{20}H_{16}N_2O_4{\cdot}C_7H_8\\ M_r = 440.48\\ Monoclinic, \ P2_1/c\\ a = 11.9753 \ (3) \ \text{\AA}\\ b = 18.8539 \ (5) \ \text{\AA}\\ c = 9.9240 \ (2) \ \text{\AA}\\ \beta = 108.819 \ (1)^\circ \end{array}$ | $V = 2120.87 (9) \text{ Å}^{3}$<br>Z = 4<br>Mo K\alpha radiation<br>$\mu = 0.09 \text{ mm}^{-1}$<br>T = 100.0 (1)  K<br>$0.25 \times 0.13 \times 0.02 \text{ mm}$ |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.954, \ T_{\max} = 0.994$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.058$ | 299 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.163$               | H-atom parameters constrained                              |
| S = 1.11                        | $\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 6233 reflections                | $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

Selected centroid ··· centroid distances (Å).

| $Cg1 \cdots Cg1^{i}$  | 3.7867 | (1) | Cg2·    | $\cdot \cdot C_{\xi}$ | 3 <sup>ii</sup> |           | 4.5626 (3)  |
|-----------------------|--------|-----|---------|-----------------------|-----------------|-----------|-------------|
| Summature and and (i) | <br>   | - 1 | 1. (;;) |                       | 1 -             | 3 C-1 C-2 | and C-2 and |

Symmetry codes: (i) 1; (ii)  $x, -y - \frac{1}{2}, z - \frac{3}{2}$ . Cg1, Cg2, and Cg3 are the centroids of the C1-C6, C8-C13 and C15-C20 benzene rings, respectively.

24830 measured reflections

 $R_{\rm int} = 0.038$ 

6233 independent reflections 4023 reflections with  $I > 2\sigma(I)$ 

<sup>‡</sup> Additional correspondence author, e-mail: zsrkk@yahoo.com.

| Table 2                      |    |
|------------------------------|----|
| Hydrogen-bond geometry (Å, ° | ). |

| $D - H \cdot \cdot \cdot A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------------|------|-------------------------|--------------|---------------------------|
| O1−H1 <i>O</i> 1···N1        | 0.94 | 1.83                    | 2.6568 (17)  | 145                       |
| $O3-H1O3\cdots O2^{i}$       | 0.96 | 1.64                    | 2.5919 (18)  | 171                       |
| O4−H1O4···O3 <sup>iii</sup>  | 0.90 | 1.87                    | 2.7403 (16)  | 162                       |
| $N2-H1N2\cdots O2$           | 0.88 | 1.84                    | 2.5954 (18)  | 143                       |
| $N2-H1N2\cdots N1$           | 0.88 | 2.37                    | 2.7245 (19)  | 104                       |
| $C16-H16A\cdotsO1^{iv}$      | 0.95 | 2.55                    | 3.439 (2)    | 157                       |
| $C17 - H17A \cdots O4^{v}$   | 0.95 | 2.51                    | 3.381 (2)    | 152                       |
| $C11 - H11A \cdots Cg4^{vi}$ | 0.95 | 2.97                    | 3.619 (2)    | 126                       |
|                              |      |                         |              |                           |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iii)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iv)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (v) -x + 1, -y, -z + 1; (vi)  $-x, y - \frac{1}{2}, -z + \frac{1}{2}$ . Cg4 is the centroid of the C21–C26 benzene ring.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. VM and HZ thank the University of Isfahan for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2135).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci., 18, 377-377.
- Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.
- Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51-59.
- Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, 03094–03095.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, 03234–03235.
- Fakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813-817.
- Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.
- Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, 01657-01658.
- Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, 01335.
- Fun, H.-K., Mirkhani, V., Kia, R. & Rostami Vartooni, A. (2008a). Acta Cryst. E64, 01374–01375.
- Fun, H.-K., Mirkhani, V., Kia, R. & Rostami Vartooni, A. (2008b). Acta Cryst. E64, 01471.
- Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
- Hajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1351.
- Karabiyik, H., Guzel, B., Aygun, M., Boga, G. & Buyukgungor, O. (2007). Acta Cryst. C63, o215–o218.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.

supplementary materials

Acta Cryst. (2008). E64, o1790-o1791 [doi:10.1107/S1600536808026305]

# (Z)-6-{2-[(E)-2,4-Dihydroxybenzylideneamino]phenylaminomethylene}-3-hydroxycyclohexa-2,4-dienone toluene solvate

## H.-K. Fun, R. Kia, V. Mirkhani and H. Zargoshi

#### Comment

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao *et al.*, 2000), anti-HIV (Sriram *et al.*, 2006), antibacterial and antifungal (Karthikeyan *et al.*, 2006) properties. Although numerous transition-metal complexes of Schiff bases have been structurally characterized (Granovski *et al.*, 1993), relatively few free Schiff bases have been similarly characterized. *N*-substituted salicylaldimines show photochromism and thermochromism in the solid state. These effects are produced by intramolecular proton transfer associated with a change in the  $\pi$ -electron configuration (Hajioudis *et al.* 1987). In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005*a*,*b*) such as nickel in some natural food products (Fakhari *et al.*, 2005) or biologically important species (Shahrokhian *et al.*, 2000). As part of a general study of tetradenate and bidentate Schiff bases (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008; Fun, Mirkhani *et al.*, 2008*a*,*b*), we determined the structure of the title compound.

The title compound was synthesized from o-phenylenediamine by reaction with two equivalents of 2,4-dihydroxybenzaldehyde, and the expected reaction product would thus have been the bis-Schiff base 4-((E)-(2-((E)-2)))hydroxybenzylideneamino)phenylimino)methyl) benzene-1,3-diol. The actual molecule obtained in the solid state is however its prototropic tautomer formed by transfer of one of the ortho-hydroxyl protons onto the adjacent imine unit. The proton transfer is accompanied by a shift of electron pairs as is evident from the observed C20–O2 and C14–N2 bond distances of 1.305 (2) and 1.315 (2) Å, which are consistent with C=O and C-N distances (Allen et al., 1987), respectively. The formation of a C=O keto group rather than a C-O<sup>-</sup> phenolate is also obvious by comparison with the other three phenol C-OH groups in the structure, which are about 0.05 Å longer than C20—O2. The actual molecule present in the solid state is thus the charge neutral β-keto amine (Z)-3-hydroxy-6-((2-((E)-2- hydroxybenzylideneamino)phenylamino)methylene)cyclohexa-2,4-dienone (top isomer in Fig. 4), with a small contribution of its zwitter-ionic valence tautomer via partial delocalization of electron pairs along the atom chain N2—C14—C15—C20—O2 (bottom tautomer in Fig. 4). The other imine group did not undergo proton transfer and is present in its original Shiff base state. Both the imine as well as the amine units are stabilized by strong O—H···N and N—H···O hydrogen bonds (Table 2) that generate S(6) ring motifs whereas the intramolecular N—H···N hydrogen bond between the amine and imine (Table 2) exhibits an S(5) ring motif (Bernstein et al., 1995). Bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Eltayeb et al., 2007a,b; Cakir et al. 2002; Karabiyik et al., 2007). The C8–C13 phenyl ring makes a dihedral angle of 51.99 (8)° with the dihydroxyphenyl ring (C1–C6/O1/O3) and 12.95 (9)° with the keto-hydroxyphenyl ring (C15–C20/O2/O4). In the crystal packing (Fig. 2), additional O-H···O hydrogen bonds and weak C-H···O interactions (Table 2) link the molecules into one dimensional zigzag extended chains along the b axis and these chains are further stacked (Fig. 2 & 3) along the c axis thus forming two-dimensional extended networks parallel to the bc plane. The crystal is further stabilized by weak C—H $\cdots\pi$  interactions (Table 2). The short distance between the centroids of the six-membered rings prove an existence of  $\pi \cdots \pi$  interactions (Table 1).

## Experimental

The title compound was synthesized by adding 2,4-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of *o*-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from a mixture of THF/toluene (2/1) by slow evaporation of the solvents at room temperature over several days.

## Refinement

Hydroxyl and amine/imine H atoms were located from the difference Fourier map and refined as riding on the parent atoms with isotropic refinement of the displacement parameters. The remaining H atoms were geometrically located and refined as riding model. A rotating group model was used for the methyl groups.

## Figures



Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.



Fig. 2. The crystal packing of (I), viewed down the c axis, showing the molecular chains along the b axis and stacking of these chains along the c-axis. Hydrogen bonds are drawn as dashed lines. The toluene molecules were omitted for clarity.



Fig. 3. The crystal packing of (I), showing 1-D extended chains along the c axis. The toluene molecules were omitted for clarity.



Fig. 4. The charge neutral  $\beta$ -keto amine (main component) form and the valence tautomer via partial delocalization of electron pairs along the N—C—C—O atom chain (small contribution) in the title compound.

(Z)-6-{2-[(E)-2,4-Dihydroxybenzylideneamino]phenylaminomethylene}- 3-hydroxycyclohexa-2,4-dienone toluene solvate

Crystal data

| $C_{20}H_{16}N_2O_4 \cdot C_7H_8$ | $F_{000} = 928$                              |
|-----------------------------------|----------------------------------------------|
| $M_r = 440.48$                    | $D_{\rm x} = 1.380 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/c$              | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc              | Cell parameters from 5653 reflections        |
| a = 11.9753 (3) Å                 | $\theta = 2.4 - 29.6^{\circ}$                |
| b = 18.8539 (5)  Å                | $\mu = 0.09 \text{ mm}^{-1}$                 |
| c = 9.9240 (2)  Å                 | T = 100.0 (1)  K                             |
| $\beta = 108.819 \ (1)^{\circ}$   | Plate, yellow                                |
| $V = 2120.87 (9) \text{ Å}^3$     | $0.25\times0.13\times0.02~mm$                |
| Z = 4                             |                                              |

### Data collection

| Bruker SMART APEXII CCD area-detector diffractometer                 | 6233 independent reflections           |
|----------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                             | 4023 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                              | $R_{\rm int} = 0.039$                  |
| T = 100.0(1)  K                                                      | $\theta_{\text{max}} = 30.2^{\circ}$   |
| $\phi$ and $\omega$ scans                                            | $\theta_{\min} = 2.2^{\circ}$          |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005) | $h = -14 \rightarrow 16$               |
| $T_{\min} = 0.954, \ T_{\max} = 0.994$                               | $k = -20 \rightarrow 26$               |
| 24830 measured reflections                                           | $l = -13 \rightarrow 14$               |

## Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.058$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.163$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0708P)^2 + 0.4015P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.11                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 6233 reflections                                       | $\Delta \rho_{max} = 0.76 \text{ e } \text{\AA}^{-3}$                               |
| 299 parameters                                         | $\Delta \rho_{\rm min} = -0.32 \ e \ {\rm \AA}^{-3}$                                |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

Primary atom site location methods

### Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | у           | Z             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|-------------|---------------|---------------------------|
| N1   | 0.18268 (12) | 0.42566 (7) | 0.14400 (14)  | 0.0168 (3)                |
| O3   | 0.50774 (11) | 0.63459 (6) | 0.61784 (12)  | 0.0214 (3)                |
| H1O3 | 0.5724       | 0.6608      | 0.6044        | 0.032*                    |
| 01   | 0.23309 (11) | 0.45373 (6) | 0.41957 (12)  | 0.0225 (3)                |
| H1O1 | 0.2053       | 0.4270      | 0.3349        | 0.034*                    |
| O4   | 0.48126 (11) | 0.07727 (6) | 0.62444 (12)  | 0.0217 (3)                |
| H1O4 | 0.4999       | 0.0995      | 0.7096        | 0.033*                    |
| O2   | 0.31282 (10) | 0.29118 (6) | 0.39178 (12)  | 0.0187 (3)                |
| N2   | 0.17826 (12) | 0.28136 (7) | 0.12862 (14)  | 0.0170 (3)                |
| H1N2 | 0.2152       | 0.3043      | 0.2079        | 0.025*                    |
| C8   | 0.11363 (14) | 0.39346 (9) | 0.01527 (17)  | 0.0165 (3)                |
| C6   | 0.31241 (14) | 0.51993 (9) | 0.26313 (17)  | 0.0161 (3)                |
| C15  | 0.27803 (14) | 0.18211 (9) | 0.26242 (17)  | 0.0165 (3)                |
| C13  | 0.10818 (14) | 0.31889 (9) | 0.00863 (17)  | 0.0164 (3)                |
| C16  | 0.30131 (15) | 0.10819 (9) | 0.26262 (18)  | 0.0194 (4)                |
| H16A | 0.2684       | 0.0818      | 0.1775        | 0.023*                    |
| C7   | 0.24537 (14) | 0.48061 (9) | 0.13868 (17)  | 0.0165 (3)                |
| H7A  | 0.2475       | 0.4959      | 0.0483        | 0.020*                    |
| C9   | 0.04597 (15) | 0.43207 (9) | -0.10182 (17) | 0.0193 (4)                |
| H9A  | 0.0487       | 0.4824      | -0.0988       | 0.023*                    |
| C19  | 0.39752 (15) | 0.18616 (9) | 0.51268 (17)  | 0.0177 (3)                |
| H19A | 0.4305       | 0.2113      | 0.5994        | 0.021*                    |
| C5   | 0.38949 (15) | 0.57342 (8) | 0.25065 (17)  | 0.0176 (4)                |
| H5A  | 0.3961       | 0.5834      | 0.1597        | 0.021*                    |
| C1   | 0.30495 (14) | 0.50578 (8) | 0.39969 (17)  | 0.0163 (3)                |
| C17  | 0.36973 (15) | 0.07431 (9) | 0.38208 (18)  | 0.0198 (4)                |
| H17A | 0.3853       | 0.0250      | 0.3804        | 0.024*                    |
| C18  | 0.41709 (15) | 0.11407 (9) | 0.50847 (17)  | 0.0176 (3)                |
| C2   | 0.36978 (14) | 0.54490 (9) | 0.51645 (17)  | 0.0175 (4)                |
| H2A  | 0.3627       | 0.5358      | 0.6075        | 0.021*                    |
| C12  | 0.03656 (15) | 0.28533 (9) | -0.11326 (17) | 0.0204 (4)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H12A | 0.0333        | 0.2350       | -0.1173       | 0.024*     |
|------|---------------|--------------|---------------|------------|
| C20  | 0.32949 (14)  | 0.22283 (9)  | 0.39033 (17)  | 0.0164 (3) |
| C4   | 0.45602 (15)  | 0.61205 (9)  | 0.36648 (17)  | 0.0185 (4) |
| H4A  | 0.5083        | 0.6479       | 0.3559        | 0.022*     |
| C14  | 0.20597 (15)  | 0.21362 (9)  | 0.13726 (17)  | 0.0176 (4) |
| H14A | 0.1756        | 0.1849       | 0.0548        | 0.021*     |
| C10  | -0.02551 (15) | 0.39818 (10) | -0.22315 (18) | 0.0225 (4) |
| H10A | -0.0714       | 0.4253       | -0.3024       | 0.027*     |
| C3   | 0.44526 (14)  | 0.59760 (9)  | 0.49988 (17)  | 0.0168 (3) |
| C11  | -0.02984 (15) | 0.32460 (10) | -0.22838 (18) | 0.0231 (4) |
| H11A | -0.0786       | 0.3013       | -0.3114       | 0.028*     |
| C23  | 0.30310 (18)  | 0.71109 (11) | 0.7808 (2)    | 0.0329 (5) |
| H23A | 0.3583        | 0.7384       | 0.7523        | 0.040*     |
| C25  | 0.2145 (2)    | 0.67854 (11) | 0.9559 (2)    | 0.0352 (5) |
| H25A | 0.2093        | 0.6830       | 1.0490        | 0.042*     |
| C26  | 0.13983 (19)  | 0.63297 (10) | 0.8595 (2)    | 0.0314 (5) |
| H26A | 0.0822        | 0.6073       | 0.8867        | 0.038*     |
| C22  | 0.22868 (18)  | 0.66449 (10) | 0.6864 (2)    | 0.0293 (4) |
| H22A | 0.2339        | 0.6604       | 0.5932        | 0.035*     |
| C21  | 0.14696 (17)  | 0.62366 (10) | 0.7224 (2)    | 0.0292 (4) |
| C24  | 0.29687 (18)  | 0.71778 (11) | 0.9173 (2)    | 0.0350 (5) |
| H24A | 0.3487        | 0.7490       | 0.9837        | 0.042*     |
| C27  | 0.0688 (2)    | 0.57353 (12) | 0.6196 (2)    | 0.0402 (5) |
| H27A | 0.1166        | 0.5365       | 0.5954        | 0.060*     |
| H27B | 0.0242        | 0.5992       | 0.5331        | 0.060*     |
| H27C | 0.0139        | 0.5517       | 0.6622        | 0.060*     |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| N1  | 0.0194 (7) | 0.0153 (7) | 0.0144 (7) | 0.0009 (6)  | 0.0036 (6) | -0.0015 (5) |
| O3  | 0.0251 (7) | 0.0191 (6) | 0.0189 (6) | -0.0058 (5) | 0.0056 (5) | -0.0025 (5) |
| 01  | 0.0294 (7) | 0.0215 (7) | 0.0167 (6) | -0.0103 (5) | 0.0076 (5) | -0.0025 (5) |
| O4  | 0.0273 (7) | 0.0183 (6) | 0.0174 (6) | 0.0051 (5)  | 0.0043 (5) | 0.0029 (5)  |
| O2  | 0.0224 (6) | 0.0131 (6) | 0.0187 (6) | -0.0011 (5) | 0.0039 (5) | -0.0009 (5) |
| N2  | 0.0183 (7) | 0.0169 (7) | 0.0137 (7) | -0.0029 (6) | 0.0025 (6) | -0.0007 (5) |
| C8  | 0.0163 (8) | 0.0201 (9) | 0.0131 (8) | -0.0010 (7) | 0.0048 (6) | -0.0024 (6) |
| C6  | 0.0180 (8) | 0.0144 (8) | 0.0150 (8) | 0.0017 (6)  | 0.0040 (6) | -0.0004 (6) |
| C15 | 0.0189 (8) | 0.0162 (8) | 0.0163 (8) | -0.0011 (7) | 0.0082 (7) | -0.0006 (6) |
| C13 | 0.0152 (8) | 0.0170 (8) | 0.0172 (8) | 0.0002 (6)  | 0.0053 (7) | 0.0015 (6)  |
| C16 | 0.0261 (9) | 0.0173 (9) | 0.0168 (8) | -0.0008 (7) | 0.0099 (7) | -0.0025 (7) |
| C7  | 0.0188 (8) | 0.0165 (8) | 0.0139 (8) | 0.0033 (7)  | 0.0047 (7) | 0.0005 (6)  |
| C9  | 0.0218 (9) | 0.0181 (9) | 0.0169 (8) | 0.0033 (7)  | 0.0047 (7) | 0.0013 (7)  |
| C19 | 0.0196 (8) | 0.0176 (9) | 0.0151 (8) | -0.0014 (7) | 0.0044 (7) | -0.0009 (6) |
| C5  | 0.0212 (9) | 0.0157 (8) | 0.0168 (8) | 0.0027 (7)  | 0.0073 (7) | 0.0031 (6)  |
| C1  | 0.0180 (8) | 0.0133 (8) | 0.0174 (8) | 0.0012 (6)  | 0.0055 (7) | 0.0008 (6)  |
| C17 | 0.0259 (9) | 0.0148 (8) | 0.0214 (9) | 0.0022 (7)  | 0.0115 (7) | 0.0005 (7)  |
| C18 | 0.0179 (8) | 0.0186 (9) | 0.0177 (8) | 0.0022 (7)  | 0.0077 (7) | 0.0034 (7)  |

# supplementary materials

| C2  | 0.0206 (9)  | 0.0162 (8)  | 0.0156 (8)  | 0.0005 (7)   | 0.0059 (7)  | -0.0002 (6) |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| C12 | 0.0195 (9)  | 0.0194 (9)  | 0.0205 (9)  | -0.0045 (7)  | 0.0041 (7)  | -0.0035 (7) |
| C20 | 0.0163 (8)  | 0.0161 (8)  | 0.0182 (8)  | -0.0010 (6)  | 0.0074 (7)  | 0.0003 (6)  |
| C4  | 0.0202 (9)  | 0.0143 (8)  | 0.0207 (9)  | -0.0003 (7)  | 0.0062 (7)  | 0.0011 (7)  |
| C14 | 0.0214 (9)  | 0.0156 (8)  | 0.0167 (8)  | -0.0025 (7)  | 0.0074 (7)  | -0.0007 (6) |
| C10 | 0.0197 (9)  | 0.0285 (10) | 0.0159 (8)  | 0.0037 (7)   | 0.0012 (7)  | 0.0014 (7)  |
| C3  | 0.0179 (8)  | 0.0142 (8)  | 0.0164 (8)  | 0.0008 (6)   | 0.0028 (7)  | -0.0034 (6) |
| C11 | 0.0197 (9)  | 0.0291 (10) | 0.0168 (9)  | -0.0014 (8)  | 0.0009 (7)  | -0.0037 (7) |
| C23 | 0.0296 (11) | 0.0343 (12) | 0.0362 (12) | 0.0008 (9)   | 0.0124 (9)  | 0.0017 (9)  |
| C25 | 0.0458 (13) | 0.0309 (11) | 0.0313 (11) | 0.0098 (10)  | 0.0158 (10) | 0.0044 (9)  |
| C26 | 0.0341 (11) | 0.0258 (11) | 0.0402 (12) | 0.0053 (9)   | 0.0201 (10) | 0.0106 (9)  |
| C22 | 0.0307 (11) | 0.0280 (10) | 0.0316 (11) | 0.0033 (9)   | 0.0134 (9)  | 0.0029 (8)  |
| C21 | 0.0292 (10) | 0.0275 (10) | 0.0311 (11) | 0.0057 (8)   | 0.0101 (9)  | 0.0055 (8)  |
| C24 | 0.0330 (11) | 0.0363 (12) | 0.0336 (11) | 0.0063 (9)   | 0.0076 (9)  | -0.0001 (9) |
| C27 | 0.0429 (13) | 0.0380 (13) | 0.0415 (13) | -0.0042 (10) | 0.0161 (11) | 0.0008 (10) |

Geometric parameters (Å, °)

| N1—C7                | 1.290 (2)   | C5—H5A                  | 0.9500     |
|----------------------|-------------|-------------------------|------------|
| N1—C8                | 1.415 (2)   | C1—C2                   | 1.382 (2)  |
| O3—C3                | 1.3608 (19) | C17—C18                 | 1.413 (2)  |
| O3—H1O3              | 0.9628      | C17—H17A                | 0.9500     |
| O1—C1                | 1.3608 (19) | C2—C3                   | 1.388 (2)  |
| O1—H1O1              | 0.9431      | C2—H2A                  | 0.9500     |
| O4—C18               | 1.3513 (19) | C12—C11                 | 1.378 (2)  |
| O4—H1O4              | 0.9048      | C12—H12A                | 0.9500     |
| O2—C20               | 1.3048 (19) | C4—C3                   | 1.398 (2)  |
| N2—C14               | 1.315 (2)   | C4—H4A                  | 0.9500     |
| N2—C13               | 1.406 (2)   | C14—H14A                | 0.9500     |
| N2—H1N2              | 0.8816      | C10-C11                 | 1.389 (3)  |
| C8—C9                | 1.389 (2)   | C10—H10A                | 0.9500     |
| C8—C13               | 1.408 (2)   | C11—H11A                | 0.9500     |
| C6—C5                | 1.399 (2)   | C23—C22                 | 1.380 (3)  |
| C6—C1                | 1.412 (2)   | C23—C24                 | 1.387 (3)  |
| C6—C7                | 1.442 (2)   | С23—Н23А                | 0.9500     |
| C15—C14              | 1.396 (2)   | C25—C26                 | 1.379 (3)  |
| C15—C16              | 1.421 (2)   | C25—C24                 | 1.382 (3)  |
| C15—C20              | 1.441 (2)   | C25—H25A                | 0.9500     |
| C13—C12              | 1.389 (2)   | C26—C21                 | 1.402 (3)  |
| C16—C17              | 1.363 (2)   | C26—H26A                | 0.9500     |
| C16—H16A             | 0.9500      | C22—C21                 | 1.380 (3)  |
| С7—Н7А               | 0.9500      | C22—H22A                | 0.9500     |
| C9—C10               | 1.388 (2)   | C21—C27                 | 1.482 (3)  |
| С9—Н9А               | 0.9500      | C24—H24A                | 0.9500     |
| C19—C18              | 1.382 (2)   | C27—H27A                | 0.9800     |
| C19—C20              | 1.406 (2)   | С27—Н27В                | 0.9800     |
| C19—H19A             | 0.9500      | С27—Н27С                | 0.9800     |
| C5—C4                | 1.377 (2)   |                         |            |
| Cg1…Cg1 <sup>i</sup> | 3.7867 (1)  | Cg2···Cg3 <sup>ii</sup> | 4.5626 (3) |

| C7—N1—C8                    | 119.05 (14) | C11—C12—C13                          | 120.40 (16)  |
|-----------------------------|-------------|--------------------------------------|--------------|
| C3—O3—H1O3                  | 112.8       | C11—C12—H12A                         | 119.8        |
| C1-01-H101                  | 108.3       | C13—C12—H12A                         | 119.8        |
| C18—O4—H1O4                 | 117.3       | O2—C20—C19                           | 121.60 (15)  |
| C14—N2—C13                  | 127.78 (14) | O2—C20—C15                           | 120.84 (15)  |
| C14—N2—H1N2                 | 112.0       | C19—C20—C15                          | 117.56 (15)  |
| C13—N2—H1N2                 | 120.0       | C5—C4—C3                             | 118.85 (15)  |
| C9—C8—C13                   | 118.59 (15) | С5—С4—Н4А                            | 120.6        |
| C9—C8—N1                    | 122.94 (15) | C3—C4—H4A                            | 120.6        |
| C13—C8—N1                   | 118.38 (14) | N2-C14-C15                           | 122.80 (15)  |
| C5-C6-C1                    | 117.97 (15) | N2-C14-H14A                          | 118.6        |
| C5—C6—C7                    | 119.71 (14) | C15-C14-H14A                         | 118.6        |
| C1 - C6 - C7                | 122.32 (15) | C9—C10—C11                           | 119 84 (16)  |
| C14-C15-C16                 | 118 90 (15) | C9—C10—H10A                          | 120.1        |
| $C_{14}$ $C_{15}$ $C_{20}$  | 121 53 (15) | $C_{11}$ $C_{10}$ $H_{10A}$          | 120.1        |
| $C_{16}$ $C_{15}$ $C_{20}$  | 119 57 (15) | 03-03-02                             | 117 60 (14)  |
| $C_{12}$ $C_{13}$ $N_{2}$   | 122 70 (15) | 03 - 03 - 04                         | 121 45 (15)  |
| $C_{12} = C_{13} = C_{8}$   | 120.12 (15) | $C_{2} = C_{3} = C_{4}$              | 120.95(15)   |
| N2-C13-C8                   | 117 18 (14) | C12 - C11 - C10                      | 120.08 (16)  |
| $C_{17}$ $C_{16}$ $C_{15}$  | 121 56 (15) | C12—C11—H11A                         | 120.00 (10)  |
| $C_{17}$ $C_{16}$ $H_{16A}$ | 119.2       | C10_C11_H11A                         | 120.0        |
| C15-C16-H16A                | 119.2       | $C^{22} - C^{23} - C^{24}$           | 119.6(2)     |
| N1_C7_C6                    | 123 24 (15) | $C_{22} = C_{23} = C_{24}$           | 120.2        |
| N1_C7_H7A                   | 118.4       | $C_{22} = C_{23} = H_{23A}$          | 120.2        |
| C6_C7_H7A                   | 118.4       | $C_{24} = C_{25} = C_{24}$           | 120.2        |
| $C_{10}$ $C_{9}$ $C_{8}$    | 120.97 (16) | $C_{20} = C_{23} = C_{24}$           | 110.0        |
| $C_{10} = C_{9} = C_{8}$    | 110.5       | $C_{20} = C_{25} = H_{25} A$         | 119.9        |
| C8_C9_H9A                   | 119.5       | $C_{24} = C_{25} = M_{25} = M_{25}$  | 121 50 (19)  |
| $C_{18} = C_{19} = C_{20}$  | 120.03 (15) | $C_{25} = C_{20} = C_{21}$           | 110.3        |
| $C_{18} = C_{19} = C_{20}$  | 120.95 (15) | $C_{23} = C_{20} = H_{20} A$         | 119.3        |
| C10-C19-H19A                | 119.5       | $C_{21}$ $C_{20}$ $C_{23}$ $C_{23}$  | 119.5        |
| C4 C5 C6                    | 119.5       | $C_{21} = C_{22} = C_{23}$           | 122.41 (19)  |
| $C_4 = C_5 = C_0$           | 121.00 (13) | $C_{21}$ $C_{22}$ $C_{22}$ $H_{22A}$ | 110.0        |
|                             | 119.1       | $C_{23} = C_{22} = M_{22} = M_{22}$  | 110.0        |
| $C_0 - C_3 - H_3 A$         | 119.1       | $C_{22} = C_{21} = C_{26}$           | 110.88 (19)  |
| 01 - C1 - C2                | 118.28 (14) | $C_{22} = C_{21} = C_{27}$           | 121.39 (18)  |
| 01 - C1 - C6                | 120.95(14)  | $C_{20} = C_{21} = C_{27}$           | 121.72(19)   |
| $C_2 = C_1 = C_0$           | 120.77(15)  | $C_{25} = C_{24} = C_{25}$           | 119.4 (2)    |
|                             | 118.67 (16) | C25—C24—H24A                         | 120.3        |
| C16—C17—H17A                | 120.7       | C23—C24—H24A                         | 120.3        |
| C18—C17—H17A                | 120.7       | $C_2I = C_2 / H_2 / A$               | 109.5        |
| 04-018-017                  | 122.31 (15) | C21—C27—H27B                         | 109.5        |
| 04-018-017                  | 116.02 (15) | H2/A—C2/—H2/B                        | 109.5        |
| C19—C18—C17                 | 121.66 (15) | С21—С27—Н27С                         | 109.5        |
| C1—C2—C3                    | 119.59 (15) | H2/A - C2/-H2/C                      | 109.5        |
| C1—C2—H2A                   | 120.2       | H2/B—C2/—H27C                        | 109.5        |
| C3—C2—H2A                   | 120.2       |                                      |              |
| C7—N1—C8—C9                 | -43.9 (2)   | N2-C13-C12-C11                       | -179.57 (15) |
| C7—N1—C8—C13                | 139.83 (16) | C8—C13—C12—C11                       | -0.2 (2)     |

# supplementary materials

| C14 N2 C13 C12       | 14.2 (3)     | C18 - C19 - C20 - O2                | -17820(15)   |
|----------------------|--------------|-------------------------------------|--------------|
| C14 = N2 = C13 = C12 | 14.2 (3)     | $C_{10} = C_{10} = C_{20} = C_{15}$ | 178.20 (13)  |
| C14 - N2 - C13 - C8  | -165.19 (16) | C18 - C19 - C20 - C15               | 2.0 (2)      |
| C9—C8—C13—C12        | 0.2 (2)      | C14—C15—C20—O2                      | -2.0 (2)     |
| N1-C8-C13-C12        | 176.67 (14)  | C16-C15-C20-O2                      | 177.67 (15)  |
| C9—C8—C13—N2         | 179.64 (14)  | C14—C15—C20—C19                     | 177.82 (15)  |
| N1-C8-C13-N2         | -3.9 (2)     | C16-C15-C20-C19                     | -2.5 (2)     |
| C14—C15—C16—C17      | -179.13 (15) | C6—C5—C4—C3                         | -0.5 (2)     |
| C20-C15-C16-C17      | 1.2 (2)      | C13—N2—C14—C15                      | 179.10 (15)  |
| C8—N1—C7—C6          | 175.76 (15)  | C16-C15-C14-N2                      | 178.73 (15)  |
| C5—C6—C7—N1          | 172.13 (15)  | C20-C15-C14-N2                      | -1.6 (2)     |
| C1—C6—C7—N1          | -6.8 (3)     | C8—C9—C10—C11                       | -0.1 (3)     |
| C13—C8—C9—C10        | -0.1 (2)     | C1—C2—C3—O3                         | -179.73 (14) |
| N1—C8—C9—C10         | -176.39 (15) | C1—C2—C3—C4                         | 0.5 (2)      |
| C1—C6—C5—C4          | -0.5 (2)     | C5—C4—C3—O3                         | -179.24 (15) |
| C7—C6—C5—C4          | -179.50 (15) | C5—C4—C3—C2                         | 0.5 (2)      |
| C5—C6—C1—O1          | -178.99 (14) | C13-C12-C11-C10                     | 0.0 (3)      |
| C7—C6—C1—O1          | 0.0 (2)      | C9—C10—C11—C12                      | 0.1 (3)      |
| C5—C6—C1—C2          | 1.6 (2)      | C24—C25—C26—C21                     | 1.7 (3)      |
| C7—C6—C1—C2          | -179.48 (15) | C24—C23—C22—C21                     | 0.1 (3)      |
| C15-C16-C17-C18      | 0.7 (2)      | C23—C22—C21—C26                     | 1.9 (3)      |
| C20—C19—C18—O4       | -179.47 (15) | C23—C22—C21—C27                     | -179.43 (19) |
| C20-C19-C18-C17      | -0.1 (2)     | C25—C26—C21—C22                     | -2.7 (3)     |
| C16—C17—C18—O4       | 178.10 (14)  | C25—C26—C21—C27                     | 178.57 (19)  |
| C16-C17-C18-C19      | -1.3 (2)     | C26—C25—C24—C23                     | 0.4 (3)      |
| O1—C1—C2—C3          | 178.99 (15)  | C22—C23—C24—C25                     | -1.2 (3)     |
| C6—C1—C2—C3          | -1.6 (2)     |                                     |              |
|                      | ('') 1/0 0/0 |                                     |              |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y-1/2, z-3/2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                       | <i>D</i> —Н | H···A | $D \cdots A$ | D—H…A |
|-------------------------------|-------------|-------|--------------|-------|
| 01—H101…N1                    | 0.94        | 1.83  | 2.6568 (17)  | 145   |
| O3—H1O3···O2 <sup>i</sup>     | 0.96        | 1.64  | 2.5919 (18)  | 171   |
| O4—H1O4…O3 <sup>iii</sup>     | 0.90        | 1.87  | 2.7403 (16)  | 162   |
| N2—H1N2···O2                  | 0.88        | 1.84  | 2.5954 (18)  | 143   |
| N2—H1N2…N1                    | 0.88        | 2.37  | 2.7245 (19)  | 104   |
| C16—H16A···O1 <sup>iv</sup>   | 0.95        | 2.55  | 3.439 (2)    | 157   |
| C17—H17A···O4 <sup>v</sup>    | 0.95        | 2.51  | 3.381 (2)    | 152   |
| C11—H11A····Cg4 <sup>vi</sup> | 0.95        | 2.97  | 3.619 (2)    | 126   |

Symmetry codes: (i) -x+1, -y+1, -z+1; (iii) -x+1, y-1/2, -z+3/2; (iv) x, -y+1/2, z-1/2; (v) -x+1, -y, -z+1; (vi) -x, y-1/2, -z+1/2.









Fig. 3





